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1 Introduction

The purpose of the paper is to extend the general framework for marginal deformations

developed in [1] for open bosonic string field theory [2] to open superstring field theory

formulated by Berkovits [3].1 Let us briefly review recent remarkable progress in analytic

methods for open string field theory [8]–[31], focusing on marginal deformations. Ana-

lytic solutions for marginal deformations were first constructed in [20, 21] for the bosonic

string when operator products of the marginal operator are regular, and the solutions were

extended to the superstring in [22, 23, 25]. The generalization to marginal deformations

with singular operator products was initiated in [21], and solutions to third order in the

deformation parameter were constructed. For the special case of the marginal deformation

corresponding to the zero mode of the gauge field, solutions to all orders were constructed

for the bosonic string in [24] and for the superstring in [28]. The solutions in [24, 28], how-

ever, do not satisfy the reality condition on the string field, and a strategy for constructing

real solutions was outlined in [28]. See [32]–[47] for earlier study of marginal deformations

in string field theory and related work.

Analytic solutions for general marginal deformations satisfying the reality condition

were recently constructed in [1] for the bosonic string. While previous solutions for marginal

deformations in [20–23, 25] were built from unintegrated vertex operators and b-ghost inser-

tions, the solutions in [1] were based on integrated vertex operators which are closely related

1 See [4–7] for reviews on string field theory.
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to finite deformations of boundary conformal field theory (CFT). A change of boundary

conditions in boundary CFT can be implemented by properly renormalized exponential

operators of an integral of the marginal operator, and a systematic procedure to construct

solutions from such renormalized operators was presented in [1]. The general idea of the

construction in [1] does not depend on the bosonic nature of the problem, and we expect

that the construction can be extended to the superstring. We in fact find that the extension

is remarkably simple, and we construct analytic solutions of open superstring field theory

to all orders in the deformation parameter satisfying the reality condition.

The organization of the paper is as follows. In section 2 we review the construction

in [1] of solutions to the equation of motion for the bosonic string. We use this result later

and construct string fields in the superstring satisfying the bosonic equation of motion with

the BRST operator in the bosonic theory replaced by the one in the superstring theory.

In section 3 we discuss properties of integrated vertex operators in the superstring. In

section 4 we construct solutions to the equation of motion of open superstring field theory.

This is the main result of the paper. String field theory expanded around the solution was

described in [1] using a deformed star product. In section 5 we show that the equation of

motion of open superstring field theory expanded around the solution in section 4 can also

be described using the deformed star product in [1]. Section 6 is devoted to discussion.

2 Solutions to the bosonic equation of motion

The equation of motion of open bosonic string field theory [2] is given by

QBΨ + Ψ2 = 0 , (2.1)

where Ψ is the string field of ghost number one and QB is the BRST operator. Here and

in what follows products of string fields are defined by the star product [2]. In this section

we review the construction in [1] of solutions to (2.1) for general marginal deformations.

A marginal deformation is generated by a marginal operator V1(t) which is a matter

primary field of dimension one. The solutions in [1] are constructed from an operator which

implements a change of boundary conditions between two points a and b on the boundary.

When operator products of the marginal operator are regular, it is given by

exp

[
λ

∫ b

a
dt V1(t)

]
= 1 + λ

∫ b

a
dt V1(t) +

λ2

2!

∫ b

a
dt1

∫ b

a
dt2 V1(t1)V1(t2) + . . . , (2.2)

where λ is the deformation parameter. When operator products of the marginal operator

are singular, we need to renormalize the operator (2.2) properly to make it well defined,

and we denote the renormalized operator by

[ eλV (a,b) ]r , (2.3)

where

V (a, b) ≡
∫ b

a
dt V1(t) . (2.4)
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If the marginal deformation is exactly marginal, there is a one-parameter family of con-

sistent boundary conditions labeled by λ and we expect to have a corresponding family of

solutions in string field theory. Since the new boundary condition generated by the oper-

ator [ eλV (a,b) ]r is conformal, the operator [ eλV (a,b) ]r should be invariant under the BRST

transformation up to additional contributions from the points a and b where the boundary

condition changes:

QB · [ eλV (a,b) ]r = [ eλV (a,b)OR(b) ]r − [OL(a) eλV (a,b) ]r . (2.5)

Here OL(a) and OR(b) are some local λ-dependent operators at a and b, respectively. See

the introduction of [1] for more detailed discussion. The solutions in [1] were constructed

from the operator [ eλV (a,b) ]r as follows. The operator [ eλV (a,b) ]r is given in the form of an

expansion in λ:

[ eλV (a,b) ]r =
∞∑

n=0

λn [V (n)(a, b) ]r , (2.6)

where

[V (n)(a, b) ]r ≡ 1

n!

[ (
V (a, b)

)n ]
r

for n ≥ 1 and [V (0)(a, b) ]r ≡ 1 . (2.7)

We then define a state U by

U ≡ 1 +
∞∑

n=1

λn U (n) , (2.8)

where

〈ϕ , U (n) 〉 = 〈 f ◦ ϕ(0) [V (n)(1, n) ]r 〉Wn . (2.9)

Here and in what follows we denote a generic state in the Fock space by ϕ and its corre-

sponding operator in the state-operator mapping by ϕ(0). The conformal transformation

f(ξ) is

f(ξ) =
2

π
arctan ξ , (2.10)

and we denote the conformal transformation of the operator ϕ(ξ) under the map f(ξ) by

f ◦ ϕ(ξ). The correlation function is evaluated on the surface Wn which is obtained from

the upper-half plane of z by the identification z ∼ z+n+1. We represent Wn in the region

where −1/2 ≤ Re z ≤ 1/2 + n. It follows from (2.5) that the BRST transformation of the

operator [V (n)(a, b) ]r takes the form

QB · [V (n)(a, b) ]r =
n∑

r=1

[V (n−r)(a, b)O
(r)
R (b) ]r −

n∑

l=1

[O
(l)
L (a)V (n−l)(a, b) ]r , (2.11)

where OL and OR are expanded as follows:

OL =

∞∑

n=1

λnO
(n)
L , OR =

∞∑

n=1

λnO
(n)
R . (2.12)

Thus the BRST transformation of U can be split into two pieces:

QBU = AR −AL (2.13)
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with

AL =

∞∑

n=1

λnA
(n)
L , AR =

∞∑

n=1

λnA
(n)
R , (2.14)

where

〈ϕ ,A(n)
L 〉 =

n∑

l=1

〈 f ◦ ϕ(0) [O
(l)
L (1)V (n−l)(1, n) ]r 〉Wn ,

〈ϕ ,A(n)
R 〉 =

n∑

r=1

〈 f ◦ ϕ(0) [V (n−r)(1, n)O
(r)
R (n) ]r 〉Wn .

(2.15)

We then define ΨL by

ΨL ≡ AL U
−1 , (2.16)

where U−1 is well defined perturbatively in λ because U = 1 +O(λ). The BRST transfor-

mation of ΨL can be calculated as follows:

QBΨL = QB (AL U
−1)

= (QBAL)U−1 +AL U
−1 (QBU)U−1

= (QBAL)U−1 +AL U
−1 (AR −AL)U−1

= (QBAL +AL U
−1AR)U−1 −AL U

−1AL U
−1

= (QBAL +AL U
−1AR)U−1 − Ψ2

L .

(2.17)

It was shown in [1] that the relation

QBAL = −AL U
−1AR (2.18)

holds under a set of assumptions which were argued to be satisfied for any exactly marginal

deformation. The equation (2.5) is in fact the first of these assumptions. We list the com-

plete set of assumptions in appendix A. The state ΨL thus solves the equation of motion:

QBΨL + Ψ2
L = 0 . (2.19)

The solution ΨL, however, does not satisfy the reality condition on the string field,

and a solution satisfying the reality condition was generated in [1] from ΨL by a gauge

transformation. The string field Ψ must have a definite parity under the combination of

the Hermitean conjugation (hc) and the inverse BPZ conjugation (bpz−1) to guarantee

that the bosonic string field theory action is real [48]. We define the conjugate X‡ of a

string field X by

X‡ ≡ bpz−1 ◦ hc (X) . (2.20)

The conjugation satisfies

(QBX)‡ = − (−1)X QBX
‡ , (2.21)

(X Y )‡ = Y ‡X‡ . (2.22)

Here and in what follows a string field in the exponent of (−1) denotes its Grassmann

property: it is 0 mod 2 for a Grassmann-even state and 1 mod 2 for a Grassmann-odd
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state. In order for QBΨ and Ψ2 to have the same conjugation property, the Grassmann-

odd string field Ψ must satisfy Ψ‡ = Ψ. This is the reality condition on the string field

in open bosonic string field theory. When the renormalized operator [ eλV (a,b) ]r preserves

the invariance under the reflection where V1(t) is replaced by V1(a+ b− t) and when V1 is

chosen such that the state corresponding to λV1(0) is even under the conjugation,2 we have

U ‡ = U , (U−1)‡ = U−1 , A‡
L = AR . (2.23)

Therefore, a state ΨR defined by

ΨR ≡ U−1AR (2.24)

is the conjugate of ΨL and solves the equation of motion. The two solutions ΨL and ΨR

are related by the gauge transformation generated by U :

ΨR = U−1 ΨL U + U−1QBU . (2.25)

A solution Ψ satisfying the reality condition is obtained from ΨL or ΨR by gauge trans-

formations as follows:

Ψ =
1√
U

ΨL

√
U +

1√
U
QB

√
U

=
√
U ΨR

1√
U

+
√
U QB

1√
U

=
1

2

[
1√
U

ΨL

√
U +

√
U ΨR

1√
U

+
1√
U
QB

√
U − (QB

√
U )

1√
U

]
,

(2.26)

where
√
U and 1/

√
U are defined perturbatively in λ. It follows from (

√
U )‡ =

√
U ,

(1/
√
U )‡ = 1/

√
U , and Ψ‡

L = ΨR that the last expression for Ψ in (2.26) manifestly satisfies

the reality condition. The three expressions are equivalent because of the relation (2.25).

3 Integrated vertex operators in the superstring

We expect that integrated vertex operators play a crucial role in extending the construction

of solutions in [1] to the superstring. The marginal operator V1 in the superstring is the

supersymmetry transformation of a superconformal primary field V̂1/2 in the matter sector

of dimension 1/2:

V1(t) = G−1/2 · V̂1/2(t) ≡
∫

C(t)

[
dz

2πi
TF (z) − dz̄

2πi
T̃F (z̄)

]
V̂1/2(t) , (3.1)

where TF (z) and T̃F (z̄) are the holomorphic and antiholomorphic components, respectively,

of the world-sheet supercurrent, and C(t) is a contour in the upper-half plane which runs

from the point t+ǫ on the real axis to the point t−ǫ on the real axis in the limit ǫ→ 0 with

ǫ > 0. An integrated vertex operator in the 0 picture is an integral of V1 on the boundary:

V (a, b) =

∫ b

a
dt V1(t) =

∫ b

a
dtG−1/2 · V̂1/2(t) . (3.2)

2 If the state corresponding to V1(0) is odd under the conjugation, we set λ = i λ̃ and take λ̃ to be real

to satisfy this convention.

– 5 –
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It is invariant under the BRST transformation up to nonvanishing terms from the end

points of the integral region:

QB · V (a, b) =

∫ b

a
dt ∂t [ cV1(t) + ηeφ V̂1/2(t) ]

= [ cV1(b) + ηeφ V̂1/2(b) ] − [ cV1(a) + ηeφ V̂1/2(a) ] .

(3.3)

We use the description of the superconformal ghosts in terms of η, ξ, and φ [49, 50], and

the BRST operator for the superstring is given by

QB =

∫ [
dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

]
(3.4)

with

jB = c Tm
B + c T ηξ

B + c T φ
B + ηeφ Tm

F + : bc∂c : − bη∂ηe2φ ,

T ηξ
B = − : η∂ξ : ,

T φ
B = −1

2
: ∂φ∂φ : − ∂2φ ,

(3.5)

where Tm
B and Tm

F are the holomorphic components of the energy-momentum tensor and

the supercurrent in the matter sector, respectively, and ̃B is the antiholomorphic counter-

part of jB . The operator V (a, b) in the matter sector is obviously annihilated by η0, which

is the zero mode of η and plays an important role in open superstring field theory [3]. Since

the BRST operator anticommutes with η0, the operator QB · V (a, b) is also annihilated by

η0. We can explicitly see that the operator cV1(t) + ηeφ V̂1/2(t) which appeared in (3.3)

is annihilated by η0. The operator cV1(t) + ηeφ V̂1/2(t) is also annihilated by the BRST

operator. This can be seen by acting with QB on (3.3). In the description of the super-

conformal ghosts in terms of η, ξ, and φ including the sector generated by η0 and ξ0, any

BRST-closed operator can be written as an BRST-exact operator because of the existence

of a Grassmann-odd operator R(t) satisfying

QB ·R(t) = 1 . (3.6)

We choose R(t) to be3

R(t) ≡ − cξ∂ξe−2φ(t) . (3.7)

Since

lim
ǫ→0

R(t− ǫ) [ cV1(t) + ηeφ V̂1/2(t) ] = cξe−φV̂1/2(t) , (3.8)

we have

cV1(t) + ηeφ V̂1/2(t) = QB ·
[
cξe−φV̂1/2(t)

]
. (3.9)

3 The relation QB · R(t) = 1 is a counterpart of η0 · ξ(t) = 1 in the N = 4 topological description [51],

and the operator R(t) was explicitly constructed in [3] as R(t) = ξ Y (t), where Y (t) = c∂ξe−2φ(t) is the

picture-lowering operator discussed in [52]. The relation QB · R(t) = 1 follows from QB · Y (t) = 0 and

X(t1) Y (t2) → 1 in the limit t1 → t2, where X(t) = QB · ξ(t) is the picture-raising operator.

– 6 –
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Note that the unintegrated vertex operator ce−φV̂1/2 in the −1 picture with an additional

factor of ξ appeared in (3.8). This operator is used in the solution to the linearized equation

of motion of open superstring field theory formulated by Berkovits [3], as we will discuss

in the next section.

Finite deformations of the boundary CFT are generated by an exponential of V (a, b).

When operator products of V1 are regular, it is given by eλV (a,b), where λ is the deformation

parameter. Its BRST transformation is

QB · eλV (a,b) = λ eλV (a,b) [ cV1(b) + ηeφ V̂1/2(b) ] − λ [ cV1(a) + ηeφ V̂1/2(a) ] eλV (a,b) (3.10)

if operator products of V̂1/2 and an arbitrary number of V1’s are also regular so that (3.3)

can be applied even in the presence of further insertions of V1’s. The second term on the

right-hand side can be written as

λ [ cV1(a) + ηeφ V̂1/2(a) ] eλV (a,b)

= λQB ·
[
cξe−φV̂1/2(a)

]
eλV (a,b)

= λQB ·
[
cξe−φV̂1/2(a) e

λV (a,b)
]
−λ2 [ cξe−φV̂1/2(a) ] eλV (a,b) [ cV1(b) + ηeφ V̂1/2(b) ] ,

(3.11)

where we again used the regularity assumption on the operator products. We thus find

that

λQB ·
[
cξe−φV̂1/2(a) e

λV (a,b)
]

= λ [ cV1(a)+ηe
φ V̂1/2(a) ] eλV (a,b)+λ2 [ cξe−φV̂1/2(a) ] eλV (a,b) [ cV1(b) + ηeφ V̂1/2(b) ] .

(3.12)

This relation, being generalized to the singular case, plays a crucial role in our construction

of solutions in open superstring field theory.

When operator products of V1 are singular, we need to renormalize the operator eλV (a,b)

properly to make it well defined, and we denote the renormalized operator by [ eλV (a,b) ]r
as before. If the deformation is exactly marginal and preserves superconformal invariance,

we assume as in the bosonic case that the BRST transformation of [ eλV (a,b) ]r takes the

following form:

QB · [ eλV (a,b) ]r = [ eλV (a,b)OR(b) ]r − [OL(a) eλV (a,b) ]r , (3.13)

where OL(a) and OR(b) are some Grassmann-odd local operators at a and b, respectively.

The operators [OL(a) eλV (a,b) ]r and [ eλV (a,b)OR(b) ]r are annihilated by η0 , as we discussed

before. To leading order in λ they are determined from (3.3) and given by

[OL(a) eλV (a,b) ]r = λ [ cV1(a) + ηeφ V̂1/2(a) ] + O(λ2) ,

[ eλV (a,b)OR(b) ]r = λ [ cV1(b) + ηeφ V̂1/2(b) ] + O(λ2) .
(3.14)

In the regular case, we find from the exact expression in (3.10) that

Oregular
L = Oregular

R = λ [ cV1 + ηeφ V̂1/2 ] , (3.15)

– 7 –
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and there are no higher-order corrections to the operators OL and OR.

Let us introduce the following operators:

[ ÔL(a) eλV (a,b) ]r ≡ lim
ǫ→0

R(a− ǫ) [OL(a) eλV (a,b) ]r ,

[ eλV (a,b) ÔR(b) ]r ≡ − lim
ǫ→0

[ eλV (a,b)OR(b) ]r R(b+ ǫ) .
(3.16)

These are generalizations of λ [ cξe−φV̂1/2(a) ] eλV (a,b) and λ eλV (a,b) [ cξe−φV̂1/2(b) ] in the

regular case. The ghost sector couples to the matter sector only through c and ηeφ in the

BRST current, and the operator products of cξ∂ξe−2φ with c, ηeφ, and their derivatives

are regular. The limit ǫ → 0 in (3.16) is therefore regular. To leading order in λ these

operators reduce to

[ ÔL(a) eλV (a,b) ]r = λ cξe−φV̂1/2(a) + O(λ2) ,

[ eλV (a,b) ÔR(b) ]r = λ cξe−φV̂1/2(b) + O(λ2) .
(3.17)

The BRST transformation of [ ÔL(a) eλV (a,b) ]r can be calculated from (3.6) and from the

BRST transformation of [OL(a) eλV (a,b) ]r. When the deformation is exactly marginal

and preserves superconformal invariance, we assume that the BRST transformation of

[OL(a) eλV (a,b) ]r is given by

QB · [OL(a) eλV (a,b) ]r = − [OL(a) eλV (a,b)OR(b) ]r . (3.18)

See the introduction of [1] for more detailed discussion. The BRST transformation of

[ ÔL(a) eλV (a,b) ]r is then given by

QB · [ ÔL(a) eλV (a,b) ]r = QB ·
[

lim
ǫ→0

R(a− ǫ) [OL(a) eλV (a,b) ]r

]

= [OL(a) eλV (a,b) ]r + lim
ǫ→0

R(a− ǫ) [OL(a) eλV (a,b)OR(b) ]r .
(3.19)

This is a generalization of (3.12). Similarly, we find

QB · [ eλV (a,b) ÔR(b) ]r = −QB ·
[

lim
ǫ→0

[ eλV (a,b)OR(b) ]r R(b+ ǫ)

]

= [ eλV (a,b)OR(b) ]r + lim
ǫ→0

[OL(a) eλV (a,b)OR(b) ]r R(b+ ǫ) .
(3.20)

As we mentioned before, the relations (3.19) and (3.20) play a crucial role in the construc-

tion of the general superstring solutions in the next section.

4 Solutions in the superstring

In this section we construct solutions for general marginal deformations in open superstring

field theory formulated by Berkovits [3]. The equation of motion is

η0 ( e−ΦQB e
Φ ) = 0 , (4.1)

– 8 –
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where Φ is the superstring field of ghost number zero. The leading term in the expansion

of (4.1) in Φ is given by

QB η0 Φ + O(Φ2) = 0 , (4.2)

where we have used {QB , η0} = 0. To leading order in the deformation parameter λ, a

solution Φ associated with an exactly marginal deformation takes the form

〈ϕ ,Φ 〉 = λ 〈 f ◦ ϕ(0) cξe−φV̂1/2(1) 〉W1 + O(λ2) , (4.3)

where V̂1/2 is the superconformal primary field corresponding to the marginal deforma-

tion, as introduced in section 3. The term of (4.3) at O(λ) solves the equation of motion

to linear order in Φ given in (4.2) because η0 eliminates the operator ξ and the remain-

ing unintegrated vertex operator ce−φV̂1/2 in the −1 picture is annihilated by the BRST

operator.

In [22] Erler proposed to solve the following equation:

e−ΦQB e
Φ = Ψ , (4.4)

where Ψ satisfies

QBΨ + Ψ2 = 0 , η0 Ψ = 0 , (4.5)

and to linear order in λ the state Ψ reduces to

〈ϕ ,Ψ 〉 = λ 〈 f ◦ ϕ(0) QB · [ cξe−φV̂1/2(1) ] 〉W1 + O(λ2) . (4.6)

Namely, the state Ψ is a pure-gauge string field with respect to the gauge transformation

of bosonic string field theory, while we use the BRST operator of the superstring. Since

the left-hand side of (4.4) also takes a pure-gauge form, we expect a solution Φ to the

equation (4.4) of the form (4.3). Since Ψ is annihilated by η0, the solution of (4.4) also

solves the equation of motion (4.1).

In [22] such a pure-gauge string field Ψ was constructed from the solution of open

bosonic string field theory in [20, 21] by replacing the unintegrated vertex operator cV1 in

the bosonic string with QB · [ cξe−φV̂1/2 ] in the superstring. Then the equation (4.4) was

solved and solutions for marginal deformations were constructed in open superstring field

theory when operator products of the marginal operator are regular [22, 25].

We can also obtain pure-gauge string fields satisfying (4.5) using the construction of

solutions for bosonic string field theory in [1], which covers the case where operator prod-

ucts of the marginal operator are singular. As we reviewed in section 2, the solutions

in [1] are constructed from the operator [ eλV (a,b) ]r under the assumptions listed in ap-

pendix A. String fields in the superstring satisfying (4.5) can be constructed from the

operator [ eλV (a,b) ]r with V1 = G−1/2 · V̂1/2 as introduced in (3.1) of section 3 because all

the assumptions listed in appendix A are expected to be satisfied when the deformation

corresponding to V̂1/2 is exactly marginal and preserves superconformal invariance. All the

solutions in section 2 have the same leading term in λ given by λA
(1)
L +O(λ2), where A

(n)
L
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is defined in (2.15).4 As A
(1)
L is determined by the leading term of [OL(a) eλV (a,b) ]r which

is given in (3.14) for the superstring case, we find

〈ϕ ,A(1)
L 〉 = 〈 f ◦ ϕ(0) O

(1)
L (1) 〉W1

= 〈 f ◦ ϕ(0) [ cV1(1) + ηeφ V̂1/2(1) ] 〉W1

= 〈 f ◦ ϕ(0) QB · [ cξe−φV̂1/2(1) ] 〉W1 ,

(4.7)

where we have used (3.9). Therefore, the condition (4.6) is satisfied. The solutions in [1]

are built from the operator [ eλV (a,b) ]r and its BRST transformation which are both an-

nihilated by η0, and thus the second condition in (4.5) is also satisfied. We can thus

construct superstring solutions for marginal deformations from the bosonic solutions of [1]

by solving (4.4).

The leading term of the superstring solution Φ in (4.3) is built from the leading term

of the operator [ ÔL(a) eλV (a,b) ]r, as can be seen from (3.17). We therefore expect that

the operator [ ÔL(a) eλV (a,b) ]r plays an important role in the construction of superstring

solutions. Just as AL and AR are constructed from the operators [OL(1) eλV (1,n) ]r and

[ eλV (1,n)OR(n) ]r at O(λn), respectively, we introduce states ÂL and ÂR which are con-

structed from [ ÔL(1) eλV (1,n) ]r and [ eλV (1,n) ÔR(n) ]r at O(λn). We define

ÂL =
∞∑

n=1

λn Â
(n)
L , ÂR =

∞∑

n=1

λn Â
(n)
R (4.8)

with

〈ϕ , Â (n)
L 〉 = lim

ǫ→0

n∑

l=1

〈 f ◦ ϕ(0)R(1 − ǫ)[O
(l)
L (1)V (n−l)(1, n) ]r 〉Wn ,

〈ϕ , Â (n)
R 〉 = − lim

ǫ→0

n∑

r=1

〈 f ◦ ϕ(0) [V (n−r)(1, n)O
(r)
R (n) ]r R(n+ ǫ) 〉Wn .

(4.9)

The states ÂL and ÂR are related by the conjugation:

(
ÂL

)‡
= − ÂR . (4.10)

This can be shown as follows. The state R corresponding to the operator R(0) satisfies

QBR = |0〉 and thus R ‡ = R , which follows from |0〉‡ = |0〉 and (2.21). Following the

argument in § 2.2.1 of [1], the operator R(1− ǫ) on Wn in the definition of Â
(n)
L is mapped

to R(n + ǫ) under the conjugation. The relation (4.10) then follows from A‡
L = AR. The

BRST transformations of ÂL and ÂR can be derived from those of AL and AR. The

BRST transformation of AL is presented in (2.18), and using (2.13) we find QBAR =

QB (QBU +AL) = QBAL. Thus we have

QBAL = −AL U
−1AR , QBAR = −AL U

−1AR . (4.11)

4 The leading terms of the bosonic solutions ΨL, ΨR, and Ψ are λA
(1)
L , λ A

(1)
R , and λ (A

(1)
L + A

(1)
R )/2,

respectively. Because O
(1)
R = O

(1)
L , we have A

(1)
R = A

(1)
L and thus all three solutions are equivalent to leading

order.
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Using the identities (3.19) and (3.20), the BRST transformations of ÂL and ÂR are given by

QBÂL = AL + ÂL U
−1AR , QBÂR = AR −AL U

−1 ÂR . (4.12)

These relations hold when the assumptions in appendix A are satisfied.

We now claim that ΦL and ΦR defined by

eΦL = 1 + ÂL U
−1 , e−ΦR = 1 − U−1 ÂR (4.13)

solve the equation (4.4) with Ψ being ΨL = AL U
−1 and ΨR = U−1AR , respectively,

defined in section 2. Using the relations (2.13) and (4.12), we have

QBe
ΦL =

(
AL + ÂL U

−1AR

)
U−1 − ÂL U

−1 (AR −AL)U−1

=
(
1 + ÂL U

−1
)
AL U

−1

= eΦL ΨL ,

(4.14)

and

QBe
−ΦR = − U−1

(
AR −AL U

−1 ÂR

)
+ U−1 (AR −AL)U−1 ÂR

= − U−1AR

(
1 − U−1 ÂR

)

= − ΨR e
−ΦR .

(4.15)

Therefore,

e−ΦL QBe
ΦL = ΨL , e−ΦR QBe

ΦR = − (QBe
−ΦR) eΦR = ΨR . (4.16)

Since ΨL and ΨR are annihilated by η0, the states ΦL and ΦR solve the equation of

motion (4.1).

The reality condition on the superstring field Φ is Φ‡ = − Φ, or

(
eΦ

)‡
= e−Φ . (4.17)

The solutions ΦL and ΦR do not satisfy the reality condition. In fact, we find

(
eΦL

)‡
= e−ΦR , (4.18)

which follows directly from (4.10) and the definitions (4.13). However, we can generate a

real solution from ΦL and ΦR by generalizing the method in appendix B of [22]. We claim

that Φ defined by

eΦ =
(√
eΦL U e−ΦR

)−1 (
eΦL

√
U

)
(4.19)

satisfies the reality condition and solves the equation of motion. The state Φ is well defined

to all orders in λ because eΦL U e−ΦR = 1 + O(λ) and U = 1 + O(λ). Using the relations

eΦL U e−ΦR =
(
eΦL

√
U

) (
eΦL

√
U

)‡
,

(
eΦL U e−ΦR

)‡
= eΦL U e−ΦR , (4.20)
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we have

(
eΦ

)‡
eΦ =

(
eΦL

√
U

)‡
(√(

eΦL

√
U

) (
eΦL

√
U

)‡
)−1

×
(√(

eΦL

√
U

) (
eΦL

√
U

)‡
)−1 (

eΦL
√
U

)

=
(
eΦL

√
U

)‡
((

eΦL
√
U

) (
eΦL

√
U

)‡
)−1 (

eΦL
√
U

)

= 1 .

(4.21)

Therefore, (eΦ)‡ = e−Φ and the reality condition (4.17) is satisfied.

The state Φ defined in (4.19) is related to the solution ΦL in the following way:

eΦ = Ω eΦL Λ , (4.22)

where Ω = (
√
eΦL U e−ΦR )−1 and Λ =

√
U . If Ω is annihilated by QB and Λ is annihilated

by η0, the state Φ is a gauge transformation of ΦL and thus satisfies the equation of

motion. It is obvious that the state
√
U is annihilated by η0. The state (

√
eΦL U e−ΦR )−1

is annihilated by QB if eΦL U e−ΦR is annihilated by QB . It can be shown as follows:

QB

(
eΦL U e−ΦR

)
= eΦL

(
ΨL U +QB U − U ΨR

)
e−ΦR

= eΦL
(
AL +QB U −AR

)
e−ΦR

= 0 ,

(4.23)

where we used (2.13) in the last step. This completes the construction of real solutions

in open superstring field theory for general marginal deformations under the assumptions

listed in appendix A. Incidentally, the solution Φ satisfies the equation (4.4) with the real

solution Ψ of [1] given in (2.26):

QB e
Φ =

(√
eΦL U e−ΦR

)−1
QB

(
eΦL

√
U

)

=
(√
eΦL U e−ΦR

)−1
eΦL

(
ΨL

√
U +QB

√
U

)

=
(√
eΦL U e−ΦR

)−1
eΦL

√
U

(
1√
U

ΨL

√
U +

1√
U
QB

√
U

)

= eΦ Ψ .

(4.24)

Since Ψ is annihilated by η0, we have reconfirmed that Φ solves the equation of motion (4.1).

5 Superstring field theory around the deformed background

It was shown in [1] that the action of open bosonic string field theory expanded around the

real solution (2.26) can be written in terms of deformed algebraic structures defined by

X ⋆ Y ≡ X U−1 Y ,

QX ≡ QBX +AL ⋆ X − (−1)X X ⋆ AR = QBX + ΨLX − (−1)X X ΨR ,

〈〈X,Y 〉〉 ≡ 〈X,U−1 Y U−1 〉
(5.1)
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for arbitrary string fields X and Y . When λ = 0, the deformed structures reduce to their

undeformed counterparts because U = 1 + O(λ) and AL, AR, ΨL, and ΨR are of O(λ).

The equation of motion derived from the action in terms of the deformed structures is

Q δΨ + δΨ ⋆ δΨ = 0 , (5.2)

where δΨ is related to the original string field Ψ expanded around the real solution (2.26),

which we now denote by Ψ0, as follows:

Ψ = Ψ0 +
1√
U
δΨ

1√
U
. (5.3)

The deformed structures obey the expected algebraic relations

Q2X = 0 ,

Q (X ⋆ Y ) = (QX) ⋆ Y + (−1)X X ⋆ (QY ) ,

〈〈X,Y 〉〉 = (−1)XY 〈〈Y,X 〉〉 ,
〈〈QX,Y 〉〉 = −(−1)X〈〈X,QY 〉〉 ,

〈〈X,Y ⋆ Z 〉〉 = 〈〈X ⋆ Y,Z 〉〉 ,

(5.4)

which are necessary for a consistent formulation of string field theory. Since open super-

string field theory [3] is formulated using the algebraic structures of open bosonic string

field theory, the action of open superstring field theory written in terms of the deformed

structures is consistent. It is expected to describe fluctuations around the background

corresponding to the solution (4.19) in terms of a redefined string field δΦ. We show in

this section that this is indeed the case and derive the relation between δΦ and the orig-

inal string field Φ analogous to the relation (5.3) between Ψ and δΨ for the bosonic case

found in [1].

To formulate superstring field theory using the deformed algebraic structures, we first

have to introduce an exponential operator exp⋆[X ] of the deformed star algebra. As can

be seen from the definition (5.1), the state U plays the role of the identity element of the

deformed star algebra:

X ⋆ U = U ⋆ X = X . (5.5)

We thus define exp⋆[X ] by

exp⋆[X ] = U +X +
1

2!
X ⋆X +

1

3!
X ⋆X ⋆X + . . . = U +

∞∑

n=1

1

n!
X ⋆ X ⋆ . . . ⋆ X︸ ︷︷ ︸

n times

. (5.6)

The equation of motion derived from the action using the deformed algebraic structures is

η0

(
exp⋆[−δΦ ] ⋆Q exp⋆[ δΦ ]

)
= 0 . (5.7)

To determine the relation between δΦ and the original string field Φ, let us express (5.7)

in terms of the undeformed star product and the BRST operator QB . The exponential

operator exp⋆[X ] can be written as

exp⋆[X ] =
√
U e

1√
U

X 1√
U

√
U . (5.8)
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We thus find

1√
U

[
η0

(
exp⋆[−δΦ ] ⋆Q exp⋆[ δΦ ]

) ]
1√
U

= η0

(
e
− 1√

U
δΦ 1√

U
1√
U

Q
[√
U e

1√
U

δΦ 1√
U

√
U

] 1√
U

)

= η0

(
e
− 1√

U
δΦ 1√

U QB

[
e

1√
U

δΦ 1√
U

])
+ η0

([
QB

√
U −

√
U ΨR

] 1√
U

)

+ η0

(
e
− 1√

U
δΦ 1√

U

[ 1√
U
QB

√
U +

1√
U

ΨL

√
U

]
e

1√
U

δΦ 1√
U

)
.

(5.9)

The second term on the right-hand side vanishes. Note that the real solution of bosonic

string field theory in (2.26) appeared in the last line of (5.9). We use the relation (4.4)

applied to the real bosonic and superstring solutions shown in (4.24) and find

1√
U
QB

√
U +

1√
U

ΨL

√
U = e−Φ0 QB e

Φ0 , (5.10)

where we denoted the real superstring solution (4.19) by Φ0 . The equation of motion can

then be written as

η0

(
e
− 1√

U
δΦ 1√

U QB

[
e

1√
U

δΦ 1√
U

]
+ e

− 1√
U

δΦ 1√
U e−Φ0 QB

[
eΦ0

]
e

1√
U

δΦ 1√
U

)

= η0

(
e
− 1√

U
δΦ 1√

U e−Φ0 QB

[
eΦ0 e

1√
U

δΦ 1√
U

])
= 0 .

(5.11)

We recognize this as the equation of motion for the original string field Φ with the follow-

ing identification:

eΦ = eΦ0 e
1√
U

δΦ 1√
U . (5.12)

This is the relation between δΦ and Φ, which is a natural extension of (5.3) for the

bosonic case.

6 Discussion

6.1 Explicit construction for a class of marginal deformations

We followed the strategy adopted in [1], and we have presented a procedure to construct

solutions for general marginal deformations in the superstring from properly renormalized

operator products of the marginal operator V1 satisfying the set of assumptions listed

in appendix A. In section 4 of [1], such renormalized operator products in the bosonic

string were explicitly constructed for a class of marginal deformations satisfying a finiteness

condition. To state it, we define operator products ◦
◦ V1(t1)V1(t2) . . . V1(tn) ◦

◦ for arbitrary

n with ti 6= tj recursively as follows:

◦
◦ V1(t1)

◦
◦ ≡ V1(t1) ,

◦
◦ V1(t1)V1(t2) . . . V1(tn) ◦

◦ ≡ V1(t1)
◦
◦ V1(t2) . . . V1(tn) ◦

◦

−
n∑

i=2

〈V1(t1)V1(ti) 〉 ◦
◦ V1(t2) . . . V1(ti−1)V1(ti+1) . . . V1(tn) ◦

◦

(6.1)
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for n > 1 and ti 6= tj. The finiteness condition of [1] then demands that the limit

lim
t→t′

◦
◦ V1(t)V1(t

′)n ◦
◦ (6.2)

is finite for any positive integer n.

In the superstring case, we furthermore define operator products involving the operator

V̂1/2. For arbitrary n with ti 6= tj, we define ◦
◦ V̂1/2(t1)V1(t2) . . . V1(tn) ◦

◦ by

◦
◦ V̂1/2(t1)V1(t2) . . . V1(tn) ◦

◦ ≡ V̂1/2(t1)
◦
◦ V1(t2) . . . V1(tn) ◦

◦ (6.3)

and ◦
◦ V̂1/2(t1) V̂1/2(t2)V1(t3) . . . V1(tn) ◦

◦ by

◦
◦ V̂1/2(t1) V̂1/2(t2)V1(t3) . . . V1(tn) ◦

◦ ≡ V̂1/2(t1)
◦
◦ V̂1/2(t2)V1(t3) . . . V1(tn) ◦

◦

− 〈 V̂1/2(t1) V̂1/2(t2) 〉 ◦
◦ V1(t3) . . . V1(tn) ◦

◦ .
(6.4)

Note that the correlation function 〈 V̂1/2(t)V1(t
′) 〉 vanishes because the conformal dimen-

sions of the operators do not match so that it does not appear in the definitions (6.3)

and (6.4). Then the bosonic finiteness condition (6.2) can be generalized to the following

superstring finiteness conditions.

The superstring finiteness conditions. The operators

lim
t→t′

◦
◦ V1(t)V1(t

′)n ◦
◦ , lim

t→t′
◦
◦ V̂1/2(t)V1(t

′)n ◦
◦ (6.5)

are finite for any positive integer n and the operator

lim
t→t′

◦
◦ V̂1/2(t) V̂1/2(t

′)V1(t
′)n ◦

◦ (6.6)

vanishes for any non-negative integer n.

We now construct explicit solutions of superstring field theory for the class of marginal

deformations satisfying the superstring finiteness conditions. The operators [ eλV (a,b) ]r,

[V1(a) e
λV (a,b) ]r, and [ eλV (a,b) V1(b) ]r were explicitly constructed in § 4.3 of [1]. When the

superstring finiteness conditions are satisfied, we have

QB · [ eλV (a,b) ]r = [ eλV (a,b)OR(b) ]r − [OL(a) eλV (a,b) ]r (6.7)

with5

[OL(a) eλV (a,b) ]r = λ c(a) [V1(a) e
λV (a,b) ]r+λ ηe

φ V̂1/2(a) [ eλV (a,b) ]r−
λ2

2
∂c(a) [ eλV (a,b) ]r ,

[ eλV (a,b)OR(b) ]r = λ [ eλV (a,b) V1(b) ]r c(b)+λ [ eλV (a,b) ]r ηe
φ V̂1/2(b) +

λ2

2
[ eλV (a,b) ]r ∂c(b) .

(6.8)

5 When the double-pole term 1/t2 in the operator product expansion of V1(t)V1(0) is nonvanishing, we

normalize V1(t) such that the coefficient of the double-pole term is unity. If this convention conflicts with

the reality condition on the string field, we set λ = i λ̃ and take λ̃ to be real when constructing the real

solution.
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It then follows that

[ ÔL(a) eλV (a,b) ]r = λ cξe−φ V̂1/2(a) [ eλV (a,b) ]r +
λ2

2
c∂cξ∂ξe−2φ(a) [ eλV (a,b) ]r ,

[ eλV (a,b) ÔR(b) ]r = λ [ eλV (a,b) ]r cξe
−φ V̂1/2(b) − λ2

2
[ eλV (a,b) ]r c∂cξ∂ξe

−2φ(b) .

(6.9)

We can explicitly construct superstring solutions from these operators. By generalizing the

calculation in appendix B.2 of [1], we can show that

QB · [OL(a) eλV (a,b) ]r = − [OL(a) eλV (a,b)OR(b) ]r (6.10)

with

[OL(a) eλV (a,b)OL(b) ]r

= λ2 c(a) [V1(a) e
λV (a,b) V1(b) ]r c(b) + λ2 ηeφ V̂1/2(a) [ eλV (a,b) V1(b) ]r c(b)

− λ3

2
∂c(a) [ eλV (a,b) V1(b) ]r c(b) + λ2 c(a) [V1(a) e

λV (a,b) ]r ηe
φ V̂1/2(b)

+ λ2 ηeφ V̂1/2(a) [ eλV (a,b) ]r ηe
φ V̂1/2(b) −

λ3

2
∂c(a) [ eλV (a,b) ]r ηe

φ V̂1/2(b)

+
λ3

2
c(a) [V1(a) e

λV (a,b) ]r ∂c(b) +
λ3

2
ηeφ V̂1/2(a) [ eλV (a,b) ]r ∂c(b)

− λ4

4
∂c(a) [ eλV (a,b) ]r ∂c(b) ,

(6.11)

when the superstring finiteness conditions are satisfied. Here the operator

[V1(a) e
λV (a,b) V1(b) ]r is defined as in appendix B.1 of [1]. This proves the assump-

tion (II) stated in appendix A. The remaining assumptions (III)–(VI) can be shown just as

in [1] for the bosonic case. Thus the superstring solutions constructed from the operators

[ ÔL(a) eλV (a,b) ]r and [ eλV (a,b) ÔR(b) ]r given in (6.9) using [ eλV (a,b) ]r defined in section 4

of [1] satisfy the equation of motion.

The simplest example of a deformation satisfying the superstring finiteness conditions

is the deformation associated with the constant mode of the gauge field on a D-brane in flat

space. If we denote a space-like coordinate along the D-brane by Xµ and its fermionic part-

ner by ψµ, the superconformal primary field V̂1/2 associated with the marginal deformation

is given by ψµ, and V1 is

V1(t) = G−1/2 · ψµ(t) =
i√
2α′

∂tX
µ(t) (6.12)

as in the bosonic case. In this example, the operator products (6.1), (6.3), and (6.4) are

those defined by the standard normal ordering and the superstring finiteness conditions

are satisfied. In § 4.2 of [1], several examples of marginal deformations satisfying the

finiteness condition in the bosonic case were presented. It is easy to see by generalizing

the argument in § 4.2 of [1] that the superstring finiteness conditions are satisfied for the

supersymmetric extensions of these examples, which include deformations of flat D-branes
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in flat backgrounds by constant massless modes of the gauge field and of the scalar fields

on the D-branes, the cosine potential for a space-like coordinate, and the hyperbolic cosine

potential for the time-like coordinate. Therefore, we have explicitly constructed superstring

solutions for these marginal deformations.

6.2 More specific assumptions

A point where the boundary condition is changed behaves as a primary field in the bosonic

case and as a superconformal primary field in the superstring case and is often described

in terms of a boundary-condition changing operator. If we assume this property, we can

derive more specific forms of the operators [OL(a) eλV (a,b) ]r and [ eλV (a,b)OR(b) ]r both in

the bosonic and superstring cases.

In the bosonic case, the BRST transformation of a primary field Vh(t) of dimension h is

QB · Vh(t) = c ∂tVh(t) + h (∂c)Vh(t) . (6.13)

We thus expect that

[ eλV (a,b)OR(b) ]r = c(b) ∂b [ eλV (a,b) ]r + h(λ) ∂c(b) [ eλV (a,b) ]r ,

[OL(a) eλV (a,b) ]r = − c(a) ∂a [ eλV (a,b) ]r − h(λ) ∂c(a) [ eλV (a,b) ]r ,
(6.14)

where h(λ) is a function of λ, which can be interpreted as the conformal dimension of

the boundary-condition changing operator. Therefore, once the operator [ eλV (a,b) ]r for

arbitrary a and b is given, the solution is determined up to one unknown function h(λ).

The assumption (II) in appendix A can now be derived from (6.14). We have

QB · [OL(a) eλV (a,b) ]r = − lim
ǫ→0

QB ·
(
c(a− ǫ) ∂a + h(λ) ∂c(a − ǫ)

)
[ eλV (a,b) ]r

= −
(
c∂c(a) ∂a + h(λ) c∂2c(a)

)
[ eλV (a,b) ]r

+
(
c(a) ∂a + h(λ) ∂c(a)

) (
c(a) ∂a + h(λ) ∂c(a)

)
[ eλV (a,b) ]r

+
(
c(a) ∂a + h(λ) ∂c(a)

) (
c(b) ∂b + h(λ) ∂c(b)

)
[ eλV (a,b) ]r .

(6.15)

The second line on the right-hand side precisely cancels the first line. We find

QB · [OL(a) eλV (a,b) ]r =
(
c(a) ∂a + h(λ) ∂c(a)

) (
c(b) ∂b + h(λ) ∂c(b)

)
[ eλV (a,b) ]r

= − [OL(a) eλV (a,b)OR(b) ]r ,
(6.16)

and thus we have derived the assumption (II). The assumptions (III)–(V) in appendix A

with additional operator insertions can also be derived from those without operator inser-

tions.

If the conformal dimension of the boundary-condition changing operator corresponding

to a deformed background is known and the function h(λ) is determined from the BRST

transformation of [ eλV (a,b) ]r, we can identify the value of λ which describes the deformed

background. As we discussed in § 6.1, renormalized operators satisfying the assumptions

of appendix A were constructed in [1] for a specific class of marginal deformations, and

– 17 –



J
H
E
P
1
1
(
2
0
0
9
)
0
4
2

the function h(λ) was determined as h(λ) = λ2/2 for this class of deformations. The

simplest example in this class is the deformation associated with the zero mode of the

gauge field (6.12), and in this case the boundary-condition changing operators at the end

points a and b are given by : e
− iλ√

2α′ X
µ(a)

: and : e
iλ√
2α′ X

µ(b)
:, respectively. They are primary

fields of dimension λ2/2, and this is consistent with the general result h(λ) = λ2/2 for the

class of deformations. The deformation by the cosine potential [53–56] which interpolates

Neumann and Dirichlet boundary conditions is also included in the class, and the conformal

dimension of the boundary-condition changing operator between Neumann and Dirichlet

boundary conditions is known to be 1/16. Thus a natural conjecture is that a periodic

array of lower-dimensional D-branes is described by the solution presented in section 4

of [1] with λ = 1/( 2
√

2 ).6

If the renormalized operator [ eλV (a,b) ]r obeys the relations

∂a [ eλV (a,b) ]r = [ ∂a e
λV (a,b) ]r = − λ [V1(a) e

λV (a,b) ]r ,

∂b [ eλV (a,b) ]r = [ ∂b e
λV (a,b) ]r = λ [ eλV (a,b) V1(b) ]r ,

(6.17)

then (6.14) can also be expressed as

[ eλV (a,b)OR(b) ]r =
[
eλV (a,b)

(
λ cV1(b) + h(λ) ∂c(b)

) ]
r
,

[OL(a) eλV (a,b) ]r = [
(
λ cV1(a) − h(λ) ∂c(a)

)
eλV (a,b) ]r .

(6.18)

It is easy to verify that the renormalized operators constructed in section 4 of [1] sat-

isfy (6.17).

In the superstring case, the BRST transformation of a superconformal primary field

V̂h(t) of dimension h is

QB · V̂h(t) = c ∂tV̂h(t) + h (∂c)V̂h(t) + ηeφG−1/2 · V̂h(t) . (6.19)

Since

lim
ǫ→0

R(t− ǫ) c(t) = 0 ,

lim
ǫ→0

R(t− ǫ) ∂c(t) = − c∂cξ∂ξe−2φ(t) ,

lim
ǫ→0

R(t− ǫ) ηeφ(t) = cξe−φ(t) ,

(6.20)

the ghost sectors of the operators [ ÔL(a) eλV (a,b) ]r and [ eλV (a,b) ÔR(b) ]r and consequently

of the superstring solutions are highly constrained and written in terms of cξe−φ and

c∂cξ∂ξe−2φ. We can again read off the unknown function h(λ) from the BRST transfor-

mation of [ eλV (a,b) ]r and use it to identify the value of λ which describes a deformed back-

ground when the conformal dimension of the corresponding boundary-condition changing

operator is known.

6 The solution, however, is not directly constructed from [ eλV (a,b) ]r but from its expansion in λ with

different values of a and b for different terms in the expansion. Furthermore, the radius of convergence in

λ of this solution is not known, so there could be possible loopholes in our argument.
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6.3 Pure-gauge forms

As was discussed in appendix C of [1], the bosonic solutions in section 2 can be for-

mally written as pure-gauge string fields if we use boundary-condition changing operators

expanded in λ. Similarly, the superstring solutions in this paper can also be formally

written as pure-gauge string fields of superstring field theory. Let us write the operator

[ eλV (a,b) ]r as

[ eλV (a,b) ]r = σL(a)σR(b) , (6.21)

where σL(a) and σR(b) are the boundary-condition changing operators, and expand them

as follows:

σL(a) = 1 +

∞∑

n=1

λn σ
(n)
L (a) , σR(b) = 1 +

∞∑

n=1

λn σ
(n)
R (b) . (6.22)

These are formal expansions and we do not expect the operators σ
(n)
L and σ

(n)
R to belong to

the complete set of local operators of the boundary CFT. Then the state U can be formally

factorized as follows:

U = ΛL ΛR , (6.23)

where

ΛL = 1 +
∞∑

n=1

λn Λ
(n)
L , ΛR = 1 +

∞∑

n=1

λn Λ
(n)
R (6.24)

with

〈ϕ ,Λ(n)
L 〉 = 〈 f ◦ ϕ(0)σ

(n)
L (1) 〉Wn , 〈ϕ ,Λ(n)

R 〉 = 〈 f ◦ ϕ(0)σ
(n)
R (n) 〉Wn . (6.25)

The states AL and AR can be written as

AL = − (QBΛL)ΛR , AR = ΛL (QBΛR) . (6.26)

Let us introduce states ΩL and ΩR defined by

ΩL = 1 +
∞∑

n=1

λn Ω
(n)
L , ΩR = 1 +

∞∑

n=1

λn Ω
(n)
R (6.27)

with

〈ϕ ,Ω(n)
L 〉 = 〈 f ◦ ϕ(0) QB · [Rσ(n)

L (1) ] 〉Wn , 〈ϕ ,Ω(n)
R 〉 = 〈 f ◦ ϕ(0) QB · [Rσ(n)

R (n) ] 〉Wn .

(6.28)

They are obviously annihilated by the BRST operator: QBΩL = 0 , QBΩR = 0 . Since

lim
ǫ→0

R(a− ǫ)QB · σ(n)
L (a) = − lim

ǫ→0
QB ·

[
R(a− ǫ)σ

(n)
L (a)

]
+ σ

(n)
L (a)

= −QB ·
[
Rσ

(n)
L (a)

]
+ σ

(n)
L (a) ,

(6.29)

the state ÂL can be written as

ÂL = ΩL ΛR − U . (6.30)
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Similarly, we have

ÂR = U − ΛL ΩR . (6.31)

Thus the solutions eΦL and e−ΦR can be written as

eΦL = 1 + (ΩL ΛR − U )U−1 = ΩL Λ−1
L ,

e−ΦR = 1 − U−1 (U − ΛL ΩR ) = Λ−1
R ΩR .

(6.32)

The left factor ΩL of eΦL and the right factor ΩR of e−ΦR are annihilated by QB. Further-

more, the right factor Λ−1
L of eΦL and the left factor Λ−1

R of e−ΦR are annihilated by η0 so

that both ΦL and ΦR are formally written as pure-gauge string fields of superstring field

theory. For the particular marginal deformation (6.12) associated with turning on the zero

mode of the gauge field, ΦL corresponds to the solution constructed in [28].

We can also express the real solution Φ in (4.19) in terms of ΛL, ΛR, ΩL, and ΩR.

Since

eΦL U e−ΦR = ΩL ΩR , (6.33)

we have

eΦ =
(√
eΦL U e−ΦR

)−1 (
eΦL

√
U

)
=

[ (√
ΩL ΩR

)−1
ΩL

] [
Λ−1

L

√
ΛL ΛR

]
. (6.34)

This expression for eΦ is again formally in a pure-gauge form because the left factor is

annihilated by QB and the right factor is annihilated by η0. Thus we have also solved the

problem of finding a real superstring solution in a pure-gauge form raised in [28].
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A Assumptions

In this appendix we present a list of the assumptions introduced in [1] on the renormalized

operator [ eλV (a,b) ]r for constructing solutions corresponding to general marginal deforma-

tions. See § 1.1 of [1] for more detailed discussion. While the discussion in [1] was for

the bosonic string, it can be extended to the superstring if the marginal operator V1 is

the supersymmetry transformation of a superconformal primary field V̂1/2 of dimension

1/2 as stated in (3.1) and if the BRST operator (3.4) for the superstring is used. We be-

lieve that all the assumptions are satisfied for any exactly marginal deformation preserving

superconformal invariance.

1. The BRST transformation of the operator [ eλV (a,b) ]r takes the following form:

QB · [ eλV (a,b) ]r = [ eλV (a,b)OR(b) ]r − [OL(a) eλV (a,b) ]r , (I)

where OL(a) and OR(b) are some local operators at a and b, respectively.
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2. The BRST transformation of the operator [OL(a) eλV (a,b) ]r is given by

QB · [OL(a) eλV (a,b) ]r = − [OL(a) eλV (a,b)OR(b) ]r . (II)

The operator [ eλV (a,b) ]r generalizes to

[

n∏

i=1

eλiV (ai,ai+1) ]r (A.1)

with ai < ai+1 for i = 1, 2, . . . , n when different boundary conditions on different

segments on the boundary are introduced. Two assumptions on this operator were

made in [1].

3. Replacement. When λj+1 = λj, the product eλjV (aj ,aj+1) eλj+1V (aj+1,aj+2) inside the

operator (A.1) can be replaced by eλjV (aj ,aj+2):

[ . . . eλjV (aj ,aj+1) eλjV (aj+1,aj+2) . . . ]r = [ . . . eλjV (aj ,aj+2) . . . ]r . (III)

4. Factorization. When λj vanishes, the renormalized product (A.1) factorizes

as follows:

[ . . . eλj−1V (aj−1,aj) eλj+1V (aj+1,aj+2) . . . ]r

= [ . . . eλj−1V (aj−1,aj) ]r [ eλj+1V (aj+1,aj+2) . . . ]r .
(IV)

It was also assumed that (III) and (IV) hold when OL(a1), OR(an+1), or both are inserted

into the operator (A.1). The next assumption is for operators on the family of surfaces

Wn.

5. Locality. The operators [ eλV (a,b) ]r and [OL(a) eλV (a,b) ]r defined on Wn coincide with

those defined on Wm with m > n:

[ eλV (a,b) ]r on Wn = [ eλV (a,b) ]r on Wm ,

[OL(a) eλV (a,b) ]r on Wn = [OL(a) eλV (a,b) ]r on Wm .
(V)

Finally, eλV (a,b) is classically invariant under the reflection where V1(t) is replaced by V1(a+

b− t), and it was assumed that [ eλV (a,b) ]r preserves this symmetry.

6. Reflection. The operator [ eλV (a,b) ]r is invariant under the reflection where V1(t) is

replaced by V1(a+ b− t):

[
exp

(
λ

∫ b

a
dt V1(a+ b− t)

) ]

r

=

[
exp

(
λ

∫ b

a
dt V1(t)

) ]

r

. (VI)
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